

International Joint Conference Radio 2019

Análise de risco de exposição potencial em medidor de nível de bebidas

Elbern M. K., Souto E. B., Souto, G. D. B.

Pro-Rad Consultores em Radioproteção S/S Ltda.

martin@prorad.com.br

Introdução: Recentemente a CNEN tem requerido análise das exposições potenciais para medidores de nível de bebidas, com solicitações similares ao texto a seguir.

A saber, deve ser classificada como área controlada qualquer área na qual medidas específicas de proteção radiológica são ou podem ser necessárias para: a) Controlar as exposições de rotina e evitar a disseminação da contaminação durante as condições normais de operação; ou b) Evitar ou limitar a extensão das exposições potenciais. A antiga Norma CNEN-NN-3.01 utilizava para classificação de áreas apenas os níveis de exposição ocupacional quantificados pelos valores de taxas de dose. A Norma CNEN-NN-3.01 foi atualizada e o conceito de área controlada foi ampliado, de modo que a classificação de áreas agora deve levar em conta tanto os níveis normais de exposição normais como também a prevenção ou redução da magnitude das exposições potenciais.

Embora, em algumas práticas, as exposições normais esperadas sejam baixas, há a probabilidade de exposições potenciais, principalmente nos casos de acesso dos indivíduos às fontes na linha de produção. Sendo assim, a instalação deve avaliar sua classificação de área considerando a possibilidade de indivíduos serem expostos. É necessário também que seja especificado no Plano de Radioproteção como será restringido o acesso dos indivíduos do público às fontes de radiação de forma a diminuir a probabilidade de ocorrência de exposições potenciais.

Portanto, urge a necessidade de o profissional de proteção radiológica saber realizar a análise das condições de risco afim de verificar a necessidade de ações específicas para evitar ou limitar a exposição potencial. Este trabalho tem por objetivo apresentar uma metodologia para avaliação do risco de exposição potencial em medidores nucleares utilizados para controle de nível de bebidas.

Metodologia : Para qualificar a magnitude dos riscos ocupacionais frente ao agente de risco ambiental ocupacional Radiação Ionizante, aplicou-se o método conhecido como APR — Análise Preliminar de Risco. Trata-se de uma metodologia comumente aplicada em segurança do trabalho. O risco é classificado por uma relação entre magnitude e probabilidade e, em função dessa classificação, são definidas ações a serem tomadas. Uma matriz de análise de risco realiza o cruzamento das informações de severidade (magnitude) do efeito danoso e probabilidade (frequência) de o efeito ocorrer.

Severidade	Frequência						
	Extremamente Remota	Remota	Improvável	Provável	Frequente		
Catastrófica	Menor	Moderado	Sério	Crítico	Crítico		
Crítica	Desprezível	Menor	Moderado	Sério	Crítico		
Marginal	Desprezível	Desprezível	Menor	Moderado	Sério		
Desprezível	Desprezível	Desprezível	Desprezível	Menor	Moderado		

Matriz de classificação de risco

Uma vez classificado o risco deve-se, em função da sua magnitude, definir se são necessárias ações de proteção radiológica para evitar ou limitar a exposição potencial. Se o risco for desprezível não há necessidade de ações adicionais de proteção radiológica; caso contrário, significa que devem ser tomadas ações para reduzir o risco: seja aumentando a proteção, seja reduzindo o efeito danoso. Estas ações variam desde ações administrativas, como

treinamentos, diálogos diários de segurança (DDS) e limitação de acesso, até soluções de engenharia, como equipamentos de proteção coletiva.

O passo subsequente foi elencar os possíveis perigos (efeitos indesejados), suas magnitudes (severidade) e suas probabilidades (frequência) de ocorrência. Para o medidor de nível em estudo, o risco de exposição é limitado apenas a mãos e braços por breves períodos.

Resultados: Estabeleceu-se uma lista de efeitos indesejados, severidades e frequências para classificar o risco conforme a matriz apresentada na metodologia. O resultado pode ser verificado na tabela abaixo. Em todos os casos, a mínima ação necessária é realizar controle da exposição ocupacional normal conforme normas Trabalhistas e da CNEN. Para fins de comparação também foram analisadas situações de exposição de corpo inteiro.

Descrição	Efeito	Probabilida de de câncer	Severidade do efeito	Frequência do efeito	Classificação do Risco
Limite de dose para corpo inteiro para IP (1 mSv)	Efeito estocástico de probabilidade aceitável	0,005%	Desprezível	Improvável	Desprezível
Limite de dose para corpo inteiro para IOE (50 mSv)	Efeito estocástico de probabilidade aceitável	0,25%	Desprezível	Improvável	Desprezível
Pele, para IP (50 mSv)	Efeito estocástico de probabilidade aceitável	Wt = 0,01 0,0025%	Desprezível	Extremamente remota	Desprezível
Exigência de aconselhamento médico, NN 3.01 (100 mSv)	Efeito estocástico de probabilidade aceitável	0,5%	Marginal	Extremamente remota	Desprezível
Limite de dose para extremidades para IOE (500 mSv)	Efeito estocástico de probabilidade aceitável	Wt = 0.01 0.025%	Desprezível	Improvável	Desprezível
Eritema (3 Gy)	Eritema e probabilidade de câncer inaceitável	15%	Crítica	Extremamente remota	Desprezível
Dose de corpo inteiro, letal em 50% dos casos não tratados (4 Gy)	Morte	-	Catastrófica	Extremamente remota	Menor
Exposição da mão, junto à saída do feixe (9 mSv/h)	2000 h/ano	Wt = 0.01 0.9%	Crítica	Extremamente remota	Desprezível
Exposição da mão, junto à saída do feixe (9 mSv/h)	555 h/ano	Wt = 0.01 0.225%	Desprezível	Extremamente remota	Desprezível

IP: Individuos do público; IOE: Indivíduos ocupacionalmente expostos.

Conclusões: Risco é a relação entre o dano potencial e a medida de proteção utilizada. Quanto maior a proteção menor o risco, para o mesmo dano potencial. Quanto maior o dano potencial, tão maior deve ser a proteção para que o risco se mantenha sob controle. No exemplo explorado, é extremamente improvável que uma pessoa se acidente ou se exponha intencionalmente à radiação, encostando na saída do feixe de radiação de um medidor de nível de bebidas. Nesta situação, a severidade do efeito danoso, considerando que a pessoa exporia intencionalmente sua mão ao feixe durante toda jornada laboral (2000 h/ano), é um efeito estocástico cuja severidade está acima do limite aceitável, porém a baixa probabilidade desta situação ocorrer torna o risco desprezível e, para esta magnitude de risco, não há necessidade de ação adicional. Calculou-se o tempo necessário para a probabilidade de efeito estocástico igualar o limite de dose ocupacional para IOE (para o qual a magnitude do risco ainda é desprezível): 555 horas. Como se pode perceber, qualquer exposição potencial levará a um tempo de exposição bastante inferior a estas 555 horas.

Conclui-se, portanto, não haver necessidade de adotar medidas específicas de proteção radiológica para controlar as exposições de rotina, evitar a disseminação da contaminação ou evitar ou limitar a extensão das exposições potenciais.

Referências:

CNEN-NN-3.01 "Diretrizes Básicas de Proteção Radiológica"

MTE Norma Regulamentadora № 09 – "Programas de Prevenção de Riscos Ambientais"

MTE Norma Regulamentadora Nº 15 – "Atividades e Operações Insalubres"

ICRP Publication 103